
Int. J. of Computer and Communications
Vol. 1, No. 1, June 2011
Copyright� Mind Reader Publications
www.ijcc.yolasite.com

 Testing Anomalies in Multiple and Multilevel
Inheritance in Object-Oriented Systems

Shubpreet Kaur1 , Shivani Goel2

1 MTech Student, Thapar University, Patiala, Punjab, India
1shubpreetkaur@gmail.com,

2 Assistant Professor, Department of Computer Science, Thapar University, Patiala, Punjab,
India

2shivani@thapar.edu

Abstract

Software testing is an important phase of software development process that can be easily
missed by software developers because of their limited time to complete the project. One of the
major challenges in software testing is the generation of test cases that satisfy the given
competence criterion. Object oriented testing is a technique for testing software units that has
great potential for improving the quality and reliability of software. In this paper, our focus is
on classes, objects, inheritance, method overriding, and polymorphism because the testing of
inheritance and polymorphism creates many binding anomalies during static and dynamic
time i.e. objects and the values assigned to the objects vary. Consequently we have developed
an algorithm to overcome the anomalies for multilevel inheritance.

Keywords: Anomalies, Generation of test cases, Multiple and Multilevel inheritance, Object
oriented testing, Software testing.

1 Introduction

Testing means providing the system with inputs and letting it operate on them in order to prove
that it works correctly. If it doesn't, the purpose of testing is to show the differences between the
obtained results and the expected ones. Such a difference is caused by a fault (often referred to as
bug) which must be exactly identified. For finding even the most subtle bugs, testing must be
thorough. The test cases must be chosen very carefully, and their execution should cover most of
the existing code. To test the code intensively, we need to generate many test cases. Importance
of software testing is widely recognized and researchers invest a lot of efforts in order to make
testing less tedious and more effective. Despite this, progresses in this field are not yet advanced
enough to offer software developers satisfactory solutions for their testing needs. Testing of
object oriented systems is challenging task with respect to inheritance, polymorphism, method
overriding and binding of data etc. Binding refers to the linking of a procedure call to the code to

mailto:1shubpreetkaur@gmail.com
mailto:2shivani@thapar.edu

2

be executed in response to the call. Dynamic binding (also known as late binding) means that the
code associated with a given procedure call is not known until the time of the call at run-time. It
is associated with polymorphism and inheritance. In polymorphism an operation may exhibit
different behaviors in different instances. The behavior depends upon the types of data used in
operation. Inheritance is the process by which objects of one class acquire the properties of
objects of another class. Inheritance changes the behavior when object changing its classes and
method overrides and creates ambiguities.

Testing of object-oriented systems presents a variety of new challenges due to features such as
inheritance, polymorphism, dynamic binding, and object state. Programs contain complex
interactions among sets of collaborating objects from different classes. These interactions are
greatly complicated by object-oriented features such as polymorphism, which allows the binding
of an object reference to objects of different classes.

2 Literature Survey

Object oriented approach for programming is the need of the hour. Many researchers are trying
to make it error free. The work done in this area till date is summarized here. Andrew has used
class diagrams, test adequacy criteria which are defined for use in dynamic testing. Test criteria
is defined by using collaboration diagram [1]. Rountev has presented a general approach for
adapting whole program class analyses to operate on program fragments in polymorphism
[2].Various issues and problems that are associated with testing polymorphic behavior is
discussed by Saini [13]. His approach is based on single inheritance and we are going to enhance
his work to multiple and multilevel inheritance approaches. These approaches will be tested
based on static and dynamic methods. No approach is discussed in [9] to find its anomalies by
Alexander. Stroustrup, B., believed that multiple inheritance complicates a programming language
significantly, is hard to implement, and is expensive to run [8]. Alexander describes the
syntactic patterns for each OO fault type say the software contains an anomaly and possibly a
fault [11] There have been some conflicts in ideas, concepts, and opinions among researchers
regarding object oriented programming [14]. Robert V. Binder focused on test case design -
 heuristic and formal techniques to develop test cases from object-oriented representations and
implementations, testability - factors in controllability and observability [10]. Gorden Frozer find
problems in model checkers for test case generation.

3 Anomalies during Binding in Inheritance

Multilevel Inheritance is a method where a derived class is derived from another derived class.
The relationship between classes during multilevel inheritance is shown in Fig 1.

3

Fig 1: Multilevel inheritance

Multiple Inheritance is the ability of a class to have more than one base class(super class).
The relationship between classes during multiple inheritance is shown in Fig 2.

Fig 2: Multiple Inheritance

Many anomalies occur during compile time and run time in both multiple and multilevel
inheritance. Fig 3 summarizes all these.

Fig 3: Anomalies during Binding in Inheritance

4

3.1 Multiple Inheritance with Ambiguities in Dynamic (i.e. during Run-time)
Binding

Consider the following program using multiple inheritance where the anomalies are present at
run time:

 #include<iostream.h>
 #include<conio.h>

1. class A
2. {
3. public: int a;
4. void show()
5. {
6. a=10;
7. cout<<"\n a="<<a;
8. }
9. };
10. class B
11. {
12. public: int b;
13. void show()
14. {
15. b=20;
16. cout<<"\n b="<<b;
17. }
18. };
19. class C:public A,B
20. {
21. public:int c;
22. void show()
23. {
24. cout<<"\n c="<<a+b;
25. }
26. };
27. void main()
28. {
29. clrscr();
30. C ob;
31. ob.show();
32. getch();

5

33. }

In the above code, there is no ambiguity (i.e. no static error but a run-time error). There is a call
to show() function which is present in all the three classes. Result will be garbage because we
have taken class B as private by default in line no.19 and the value of variable b in class C will
be taken garbage. Value of A will be correct as it is publicly derived. So, it will give run-time
error.

3.2 Multiple Inheritance with ambiguities during Static (i.e. Compile time)
Binding

Consider the following program using multiple inheritance where the anomalies are present at
compile time:

#include<iostream.h>
#include<conio.h>

1. class A
2. {
3. public:int a;
4. void show()
5. {
6. a=10;
7. cout<<"\n a="<<a;
8. }
9. };
10. class B
11. {
12. public:int b;
13. void show()
14. {
15. b=20;
16. cout<<"\n b="<<b;
17. }
18. };
19. class C:public A,public B
20. {
21. public:int c;
22. void show1()
23. {
24. cout<<"\n c="<<a+b;
25. }

6

26. };
27. void main()
28. {
29. clrscr();
30. C ob;
31. ob.show();
32. getch();
33. }

In the above code, there is a static error because show() is present in both the parent classes A,B
and there is show1() present in the child class C. Now it become ambiguous to which show() of
the parent classes should be executed because now we have show1() in the child instead of
show(). So, there is a static ambiguity at line 31 and the code will not be executed.

3.3 Multiple Inheritance with Anomalies Removed

Consider the following program using multiple inheritance where the anomalies are removed:

#include<iostream.h>
#include<conio.h>

1. class A
2. {
3. public: int a;
4. void show()
5. {
6. a=10;
7. cout<<"\n a="<<a;
8. }
9. };
10. class B
11. {
12. public: int b;
13. void show()
14. {
15. b=20;
16. cout<<"\n b="<<b;
17. }
18. };
19. class C:public A, public B
20. {
21. public: int c;

7

22. void show()
23. {
24. cout<<"\n c="<<a+b;
25. }
26. };
27. void main()
28. {
29. clrscr();
30. C ob;
31. ob.A::show(); // calling class A show

 // function
32. ob.B::show(); // calling class B

 // show function
33. ob.C::show(); // successful giving the

 // result
34. getch();
35. }

In the above code, there is no error. Both the run-time and static anomalies are removed because
we are specifying there when and to which class show() function to be called. Line no.31,32,33
specifies the solution to the anomalies. Here we have show() present in all the classes and no
show1() function in any class. Now we are calling the show() by specifying the object of
specified class. So, it is the successful running of the code with no errors.

4 Dynamic binding (multilevel inheritance)

Fig 4 shows the class diagram of multilevel inheritance. It shows the various state various and
methods present in respective classes.

8

Fig 4: Class diagram of multiple inheritance

The table 1 shows the state variable definition and uses of the methods for each class hierarchy
i.e. which state variables are defined in which methods and used in which methods. Here
a(),b(),c(),d(),e() are methods. q,r,s,t,u are state variables. F,S and T are the objects of the First,
Second and Third class.

Table 1: Anomalies

Fig. 5 depicts the flow control of methods when c() is bound to be an instance of First. Suppose
that a() calls b(), b() calls c(), c() calls d() and so on.

9

Fig 5: Sequence call of methods

Now suppose that calls to method F::b() precedes the call of F::c() and F::d(). Table 1 shows the
definitions uses table that shows F::q and F::s are defined by F::b() and used by F::c() and F::d().
So here is no data flow anomaly because we are first defining the variables then we are using it.

Now suppose here is an innocuous call to S.b() instead of F.b() then data flow anomaly would
exists because according to definitions uses table S.b() has called to S::t here is no problem but
after S.b() we are calling F::c() and F::d() then it creates data flow anomaly shown in Fig 6
because F::c() uses F::q and F::d() uses F::s. They are used before they are defined.

Fig 6: Data flow anomaly

Now suppose F.a() is called then S.b() and then T.c() called S.c(), S.c() called F.c() and F.c()
called T.d(). It creates data flow anomaly because according to definitions uses table S.b() has
called to S::t and T::c() is defining T::u then we are calling S::c here is no problem but after S.c()
we are calling F::c() it creates data flow anomaly because we F::c() uses F::q. This anomaly is
shown in Fig 7.

10

Fig 7: Data flow anomaly

5 Algorithm for Anomaly Detection

An algorithm is designed for detecting the anomalies in multilevel inheritance. For this various
definitions used in the algorithm are discussed :

5.1 Some Definitions

Type Family: It is a set of classes that share a common behavior with respect to a base class A (we
call it family (A)). Each descendent of A is a member B of A’s family. If B is in A’s family,
polymorphism means that any instance of B may be freely used wherever an instance of A is
expected. Every class A defines a type family, and that type family includes at least A[13].

Let A is a class in some type family.

Used by: A state variable v ε A is used by some method A if v is used in some expression in m.

Defined by: A state variable v ε A is defined by some method m ε A if m assigns first legal
value to v.

Dependency of Methods: Two methods m,n ε A, we say that m is dependent on n if m uses a
state variable v ε A which is defined by n.

Algorithm

1. initialize result=false
2. for every class ε TF do
3. for all methods mi ε A do
4. for each state variable vj ε parent used by mi do
5. if vj is defined by mk ε parent for some k between 1 to n
6. and if mk is overridden by some class child ε TF and child is descendent of parent then
7. if child class contains state variable of parent class and there exists a call to mi from mk

then
8. result=true
9. if child class contains sub class then
10. set child=subclass
11. end for
12. end for
13. set parent=parent +1
14. end for
15. return result

11

Let’s suppose initially there is no bug in the program. So, for that we initialized result is false.
Then we are checking for every class starting from parent class that belongs to a type family. In
that class we are checking all the methods defined the parent class. Then we check for each state
variable that is defined in the different methods of parent class. After that we check whether that
method is overridden by its child if it exists. Then in those methods we check for the state
variable. If that state variable is used then we can say exists some data flow anomaly. And the
result becomes true. If there exists sub class of that child class i.e. the grand child then we will
swap grand child with a child and we will have a parent child relationship there. And will check
for the anomalies again and this continues till we reached at the last level. After completing all
the levels we increment parent i.e. we come one level down and make level 2 a parent and then
the process continues from step2 for finding anomalies in the parent child relationship.

6 Test Results

In order to test the proposed algorithm, various test cases were generated and executed and are
summarized in table 2.

Table 2: Test cases of multilevel inheritance

12

13

7 Conclusion
Inheritance may take many from and each form of inheritance has some anomalies or the other.
In this paper, various anomalies of multilevel and multiple inheritance are discussed. An
algorithm is presented with which we can fetch anomalies that occur at dynamic binding. Testing
system in an object oriented manner tests the system from whole perspective so that it can
become error free. This algorithm traps all the dynamic errors. Its test cases are shown which
tells in which cases the code will fail and pass. Above are the test cases shown.

References

[1] A. Andrews, R. France, S. Ghosh, and G. Craig, “Test Adequacy Criteria for UML Design
Models”, Software Testing, Verification, and Reliability Journal, Volume 13, Number 2, June
2003.

[2] Atanas Rountev, Ana Milanova, Barbara G. Ryder, Fragment Class Analysis for Testing of
Polymorphism in Java Software, IEEE Transaction, June 2004, vol. 30, no.6, pp.372-387.

[3] H. Y. Chen, T. H. Tse, F. T. Chan, and T. Y. Chen, “In Black and White: An Integrated
Approach to Class-Level Testing of Object-Oriented Programs”, ACM Transactions on Software
Engineering and Methodology, Vol. 7, No. 3, July 1998, pp. 250–295.

[4] Lv Ge-Feng, Zou Bei-Ji, Zhou Hao-Yu, Sun Jia-Guang, “Research on Model of Automated
Test Case Generation for Complicated Interactive Software,” Mini-Micro System (in Chinese) ,
2006, Vol.1, No. 27, pp.131-135.

[5] L. Zhao, A new approach for software testability analysis, In Proceeding of the 28th
international Conference on Software Engineering, Shanghai, China, May 20 - 28, 2006, ICSE
'06. ACM Press, New York, NY, pp.985-988.

[6] McGregor D., John, A practical guide to testing object oriented systems.

[7] Meyer, B., Object-Oriented Software Construction. Prentice Hall, second ed., Apr. 1997..

[8] Mutant minimization for model-checker based test-case generation. In: Testing: Academic
and Industrial Conference Practice and Research Techniques – MUTATION, 2007. TAICPART-
MUTATION 2007. IEEE Computer Society, pp. 161–168.

 [9] R. Alexander and J. Offutt. Criteria for Testing Polymorphic Relationships. In Proceedings
of the 11th international Symposium on Software Reliability Engineering (Issre'00) (October 08
- 11, 2000). ISSRE. IEEE Computer Society, Washington, DC, pp.15-23.

14

[10] R. Binder, Testing object-oriented software: a survey, Journal of Software Testing,
verification and Reliability, 1996, vol 6, pp.125–252.

[11] R. T. Alexander, J. Offutt, and J. M. Bieman, “Syntactic Fault Patterns in OO Programs”,
Proceedings of the 8th International Conference on Engineering of Complex Computer Software
(ICECCS '02), Greenbelt, MD, November 2002.

[12] R. V. Binder, Testing Object-Oriented Systems Models, Patterns, and Tools, Addison-
Wesley, NY USA, 1999.

[13] Saini D.K, Testing Polymorphism in Object Oriented Systems for Improving software
Quality, - ACM SIGSOFT Software Engineering Notes, 2009.

[14] S Supavita , Object-Oriented Software and UML-Based Testing: A Survey Report, 2009.

[15] Stroustrup, B., Multiple Inheritance for C++, Published in the May 1999 issue of "The C/C++
Users Journal"

