

39

Int. J. of Computer and Communications
Vol. 1, No. 1, March 2011

Copyright © Mind Reader Publications

www.ijcc.yolasite.com

A better approach to QuickSort implementation

D.Abhyankar*, M.Ingle**

D. Abhyankar, School of Computer Science, D.A. University, Indore
deepak.abhyankar@yahoo.co.in

M.Ingle, School of Computer Science, D.A. University, Indore
maya_ingle@rediffmail.com

Abstract

 Quicksort is one of the most intriguing sorting algorithms and is a part
of C, C++ and Java libraries. This paper analyzes the results of an empirical study
of existing Quicksort implementations undertaken by authors. This paper
formulates an alternative implementation of Quicksort. It is reported that
alternative implementation is faster and simpler. Proposed implementation is
based on some profound basic principles and a better partitioning algorithm.

1 Introduction

Quicksort is a phenomenally popular sorting algorithm established by C.A.R.
Hoare which is on average faster than most of other sorting
algorithms[2,3,4,5,6,7,8,9]. The problem for Quicksort is its worst case time
complexity which is quadratic, but fortunately degradation to worst case rarely
occurs. One of the salient points of Quicksort is its inner loop which is incredibly
fast. Quicksort exploits the virtual memory and caches to the full and is especially
effective on modern computer architectures. If we ignore the stack space needed
by Quicksort then it is an inplace sorting algorithm. Because of these convincing
reasons Quicksort is a leading sorting algorithm and has been a part of several
standard libraries. For example C, C++ and Java libraries have long included

40

Quicksort algorithm to sort an integer array. Java library has long embraced
Arrays.sort method to sort an integer array, which is a tuned Quicksort, adapted
from Jon L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function"[1].
It was tremendously useful to study the working of existing implementations of
Quicksort and our experience suggests existing implementations are markedly
slow.
Authors undertook an extensive study of java's Arrays.sort and found it noticeably
slow. Profiling of Arrays.sort method is done on random as well as nonrandom
inputs and it is observed that it is agonizingly slow even on random inputs.
Arrays.sort method was taking seconds where any competitive sorting method
should take milliseconds. It was found that Java library's Arrays.sort method is not
good enough; we studied its strengths and weaknesses and set out to build a better
implementation which ameliorates the situation and produces a measurable effect
on performance. The proposed solution is based on the principles of simplicity,
pragmatism and elegance. It adopts some important Quicksort optimizations
which have been abandoned by Bentley and McIlroy. Compared to Arrays.sort
method, presented sort algorithm is faster(typically 4 to 10 times) on random
inputs. Proposed solution is intensely competitive even on nonrandom inputs.

It was observed that Java library's Arrays.sort method is excessively slow. It is
already known that calls to small functions make a program tortuously slow and
Java library's Arrays.sort function calls to small functions like swap and vecswap
which slowed Arrays.sort method sharply. Java's Arrays.sort method is adapted
from Bentley McIlroy paper which drops two important optimizations which are
extremely effective in Java environment. Firstly one can place a big final insertion
sort at the bottom of the recursion which replaces several bookkeeping operations
by a single comparison between array elements [2]. Secondly Java's Arrays.sort
avoids sentinels at the ends of the array which gain speed in Java environment.
Proposed algorithm address these issues and delivers outstanding performance.

 Section 2 proposes one of the most effective implementations of
Quicksort. Subsection 2.1 informally describes the working of proposed
implementation. Subsection 2.2 is a formal Java description of the suggested
algorithm. Section 3 carries out a comparative study of proposed and existing
implementation. Section 4 concludes and expresses the need of proposed
implementation.

2 Proposed Implementation

 Proposed implementation is a hybrid of Quicksort and insertion sort and is
described by informal description 2.1 and formal description 2.2.

41

2.1 Informal Description of Proposed implementation

 This description does not discuss Quicksort in its entirety; there are several good
texts and research papers[3,4,5,6,7,8,9,10] which do that. This subsection concentrates on
optimizations which we found particularly effective in delivering excellent
performance. Proposed implementation dispense with small functions by
manually inlining them because calling small functions have a crippling effect on
the performance. For example partition function has been manually inlined by
proposed implementation. Presented algorithm calls one big final insertion sort
instead of little insertion sorts at the bottom of the recursion. This replaces several
bookkeeping operations by a single comparison between array elements. Med3
function is another valuable function that takes the median of three elements as
pivot and sets the sentinels at the array ends. Performance of Quicksort crucially
depends on the selection of pivot and Med3 does the job of selecting a pivot. It
takes median of first, last and middle element as pivot, so that performance does
not degrade on non random input. Partitioning code gets rid of 3 instruction swap
and replaces it by 2 instruction code. Partitioning code implements an amazingly
fast partitioning algorithm which improves the performance in leaps and bounds.

2.2 Formal description of Proposed Implementation

class SCS_SORT{

// Hybrid of Quicksort and Insertion sort

 public static void sort(int a[], int n)
 {
 Quicksort(a,0,n-1);
 InsertionSort(a,n); //one big final insertion sort
 }

 public static void Quicksort(int a[], int p, int r)
{

 if((r-p)>10) // Entertains subarrays larger than size
12
 {
 // Inlined partitioning code
 int q;
 int p1 = p;
 int r1 = r;
 Med3(a,p1,r1); // Chooses pivot
 int x = a[p1];
 while(true)
 {

42

 do{
 r1--;
 }while(a[r1]>x);
 a[p1]=a[r1];
 do{
 p1++;
 }while(a[p1]<x);
 if(p1<r1)
 a[r1]=a[p1];
 else{
 if(a[r1+1]<=x)
 r1++;
 a[r1]=x;
 q = r1;
 break;
 }

 }
 Quicksort(a,p,q-1);
 Quicksort(a,q+1,r);
 }
}

 public static void Med3(int a[], int p, int r)
 {
 // Selects the median and sets the sentinels

 int mid = (p+r)/2;
 int largest;
 if(a[p]>a[mid])
 largest = p;
 else largest = mid;
 int temp;
 if(a[largest]>a[r])
 {
 temp = a[r];
 a[r]=a[largest];
 a[largest]=temp;
 }
 if(a[mid]>a[p])
 {
 temp = a[p];
 a[p] = a[mid];
 a[mid]=temp;
 }

 }

 public static void InsertionSort(int a[], int n)
 {
 // Implementation of Insertion sort

43

 int j = 1; int key;
 while(j<n)
 {
 key = a[j];
 int i = j-1;
 while(i>-1)
 {
 if(a[i]>key)
 a[i+1] =a[i];
 else
 break;
 i--;

 }
 a[i+1]=key;
 j++;
 }
 }

}

3 A Case Study

This research adopted an empirical approach to conduct a comparative case study
of library method and proposed method. Netbeans 6.7 was used for profiling and
was highly instrumental in preparing reliable statistics. We have generated random
input and sorted input for our empirical study and on every test data proposed
algorithm beats the library method. Case study revealed that proposed
implementation is remarkably faster than library method on random data. Even on
non random data proposed solution convincingly beats the library method.

 Table 1 (Comparison on Random and sorted Input)

Time Taken in Milliseconds

Arrays.sort() QuickInsertion() N

Random Sorted Random Sorted

10000 153 149 48.9 44.3

20000 578 287 140 152

30000 1305 334 160 235

40000 1876 471 298 237

50000 2434 528 174 257

60000 2700 781 194 269

44

70000 3362 916 215 344

80000 3573 718 356 345

90000 4107 1053 384 358

100000 4388 1234 258 420

45

46

4 Conclusions

 Study of existing Quicksort implementations revealed us that existing
implementations are interminably slow and therefore we needed a fresh
implementation which overcomes the weaknesses of existing implementations. To
addresses the need of a fresh and fast implementation an industrial strength Java
sorting program was developed which produces enormous improvement in
performance. Proposed work has adopted some pragmatic optimizations which
have been ignored by Java library. We ignored some optimizations which were
not elegant and were the cause of increased complexity and abstruseness. Results
of this research work suggest that simplicity, elegance and pragmatism are keys to
excellent performance.

References

[1] J. L. Bentley and M. D. Mcilroy "Engineering a sort function," Software—
practice and experience, VOL. 23(11), 1249–1265 (NOVEMBER 1993).

[2] R. Sedgewick, ‘Quicksort’, PhD Thesis, Stanford University (1975).

[3] C. A. R. Hoare, "Partition: Algorithm 63, " "Quicksort: Algorithm 64," Comm.
ACM 4(7), 321-322, 1961.

[4] D. E. Knuth, The Art of Computer Programming, Vol. 3, Pearson Education,

1998.

[5] C. A. R. Hoare, "Quicksort," Computer Journal5(1) , 1962, pp. 10-15.

[6] S. Baase and A. Gelder, Computer Algorithms:Introduction to Design and

Analysis, Addison-Wesley, 2000.

[7] J. L. Bentley, "Programming Pearls: how to sort," Communications of the

ACM, Vol. Issue 4, 1986, pp. 287-ff.

[8] R. Sedgewick, "Implementing quicksort Programs," Communications of the

ACM, Vol. 21, Issue10, 1978, pp. 847-857.

[9]T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to

Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001.

[10] G. S. Brodal, R. Fagerberg and G. Moruz, "On the adaptiveness of

Quicksort," Journal of Experimental AlgorithmsACM, Vol. 12, Article 3.2, 2008.

